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POSSIBLE DETERMINATION OF AN UNSTEADY 
HEAT FLUX BY USING THE FINAL STATE OF 
TEMPERATURE INDICATORS LOCATED A L O N G  T H E  
SAMPLE DEPTH* 

A. K. Alekseev UDC 536.5:519.6 

The problem of determining the heat flux density as a function of time by using the final value of the 
coordinates of the regions of change in color of temperature indicators located along the sample depth is 
considered. 

For some practical problems, when for any reasons it is impossible or undesirable to measurethe heat flux 

density or the temperature by direct methods, it is of interest to determine the heating history of a sample by using 

its state after completion of heating without using external measuring facilities. 

By heating history we mean the heat flux density over time qw(t) acting on a sample or the temperature 

on its surface Tw(t). 
In many practical problems, methods of determining the temperature of structural elements by using special 

substances that irreversibly fix changes in their structure under heating are employed. Temperature indicators, 

irradiated crystals, and some other substances are used for determin,ing the maximum temperature. In the case 

where the time function of the heat flux is known beforehand, the acting heat flux can be recovered by using data 

on the maximum temperature. Determining a heat flux whose dependence on time is unknown by using irreversible 

material changes is also of practical interest. 

In [1 ], the problem of determining qw(t) by using the extent of the thermodestruction of a material was 

considered. It leads to problems in identifying a thermodestructible material model and determining the parameters 

of this model and to an inverse heat transfer problem for the thermodestructible material and requires complex 

experiments on thermogravimetric analysis. 
In the present article, another procedure - use of strips of temperature indicators of fusion [2 ] (or fusible 

inserts) located along the material depth (in the heat propagation direction) (see Fig. 1) - is considered for heating 

process detection. When temperature indicators are used in the usual manner, they are applied to the outer (heated) 

or to the inner (heat-insulated) surface. In this case, a maximum temperature is recorded on these surfaces. 

In the proposed investigation, the coordinates of the region of transition (change in color) of the 

temperature indicators (they may be interpreted as the maximum-temperature distribution along the material 
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Fig. 1. Diagram of the layout of the temperature indicators in a sampole and 
measurements of the coordinates of regions of change in color: 1) regions of 
change in color of the temperature indicators. 

depth) are recorded. We consider a one-dimensional plate that is heated by a heat flux qw(t) and heat-insulated 

from the inside. Temperature indicator strips with different transition temperatures are arranged along the material 

depth (normal to the isotherms). Technically, this can be achieved, e.g., as follows: having cut out an insert from 

a sample, apply temperature indicator strips to its side surface along the depth and then paste it in its old place. 

The arrangement of the temperature indicator strips along the material depth makes it possible to record 

the transition front coordinates of the i-th temperature indicator X(Ti) after a sample has cooled off. 

The information on heating (qw(t)) is converted to a temperature field T (t, x) by using the heat conduction 

equation and is recorded by the temperature indicators in the form X(Ti). 

We formulate the problem of recovering the heat flux density qw(t) along the transition front coordinates 

of the temperature indicators X(Ti). 

Let the temperature field be recorded during heating as follows: the sign of transition of the i-th temperature 
tk 

indicator INDi(x) = f c~(T(t, x) - Ti)dt equals zero before a transition and unity after it. The transition front 
0 

coordinates for a set of N temperature indicators X(Ti) (i = 1, ..., N) will be considered as a maximum-temperature 

distribution along the coordinate for the time of the process in the form Tmax(X) = f(x). 

We consider the simplest model for heat transfer (without allowing for the effect of the heat of a phase 

transition or the thermophysical properties of the temperature indicator on the sample temperature field). We write 

a one-dimensional heat conduction equation with appropriate initial and boundary conditions: 

Cp OT (t, x) = ~ o~r (t, x)  ," (1) 

Ot 02x 

q~,, (t); ~ 0; (2) 
�9 Ox x ZL OX x=O 

XE(0, L); rE(0, lk); T(O,  x ) = T o ( x ) .  (3) 

Experiment gives us the field of the signs of transition (at the moment of final observation): 

th 

I N D ~ ( x ) - ~ 8 ( T ( t ,  x ) - - T ~ ) d t ,  i - ~  1 . . . .  , N ,  
0 

or the maximum-temperature distribution: 

max (T (t, x)) = Tm.~ (x) = I (x). (4)  
tc(O,.th) 

We need to have a heat flux qw(t) such that INDi(x) or f(x) can be recovered. 

In essence, we have here a degenerate problem of heat transfer in a medium with several phase transition 
fronts when the phase transition is fixed. This problem relates to the class of inverse heat transfer problems [3 ] 
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Fig. 2. Determination of the surface temperature Tw(t) by using the maximum- 
temperature distribution Tmax(X): 1) Tw(t); 2) Tmax(X) ; 3) "shadow" region. 

and is incorrectly stated. As compared to the majority of inverse problems, the question of uniqueness is of special 

importance for this problem. 
It is easy to see examples of nonuniqueness: in the case of two heating pulses separated in time by a cooling 

process, one of them may partially or completely screen the other, as a result of which many functions qw(t) can 
correspond to one final state. Here, the nonuniqueness is related to the projection nature of fixing the process. 

We consider the problem of how the unknown signal (the heat flux qw(t)) is transformed and coded by the 

heat conduction equation and the phase transition. 

Let we have a time-variable heat flux qw(t) and a maximum-temperature profile along the sample depth. 

We consider a finite-difference approximation qw(tj) = qj, T(tj) -- Tj (j = 1 . . . . .  N). The heat flux qj is 

converted to the temperature Tj(x i) on each layer along the coordinate xi: 

Ti (x3 = ~q~.  

Here ~i is the heat transfer operator. From Duhamel's principle, q~i is of the form (for a uniform time step): 

ai 0 0 0 ) 
~i  = bi ai 0 0 

ci bi a, 0 
di ci bi ai 

The coefficients a, b, c . . . .  are nonlinear functions Of X and t. Then a maximal element Tma x is chosen 

from a converted signal qw(t), is stored in material, and serves as initial data in problem (1)-(4). This choice 

already depends on the form of the solution. And depending on this choice, the solution to (1)-(4) may be unique 

or not. We obtain a system of equations with linearly independent coefficients, which may, however, be 
underdetermined because of zero columns. For example, for a heat effect having two maxima, the first of which is 

much greater than the second and which are separated b~r a time interval sufficient to equalize the temperature, a 

A = 

degenerate matrix of the type 

r ~  0 0 0  O 0  

b~ a~ 0 0 0 0 

~ a3 0 0 0 
da d~ b~ aa 0 0 

d~v c,v b.v a~, 0 0 
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Fig. 3. Recovery of the heat flux density along the coordinates of the regions of 
change in color of the temperature indicators: 1) exact value; 2) initial 
approximation; 3) calculation results with exact initial data; 4) calculation 
results with perturbed initial data (1% error), qw, kW/m2; t, sec. 

Fig. 4. Determination of the maximum-estimate domain by using a numerical 
solution: 1) exact solution; 2) magnitude of the sensitivity of the discrepancy to 
the solution components; 3) maximum estimate in the shadow domain. 

with zero columns on the right will be obtained. We have lost some part of the unknown signal. A priori information 

is needed to recover it. We have here the case of nonuniqueness, whose physical meaning consists in a loss of 

sensitivity to secondary weak heating. 

The question of uniqueness should be solved by proceeding from the available a priori information on the 

class to which the desired solution (process duration, signal behavior on different sections, etc.) belongs. 

In the case of nonuniqueness, part of the information is lost. This mainly relates to negative heat fluxes 

and fluxes after a heating maximum has passed (see Fig. 2). 

It should be noted that the difference in the mechanisms of fixing irreversible processes (phase transition 

and kinetic process) 
tk 

I N D i ( x ) =  i '6(T(/ ,  x ) - - T i ) d t ,  i =  I . . . . .  N; 
o 

l k  

Ci (,~:) = J' F, (T (t, x)) dr, i = 1, . . . ,  .N, 
o 

between the present article and [4 ] gives substantially different results for uniqueness. The kinetic process allows 

a larger volume of information to be stored than the phase transition, and it allows the above-mentioned 

degeneration to be avoided. 

The stated problem was analyzed by using numerical experiments. A heat flux density vector qj (j -- 1 . . . .  , 
N 

N) parametrizing some f u n c t i o n  (qj  = q(tj)) as a vector that  minimizes the discrepancy e = ~ ( f ( x i )  - -  fcal(Xi)) 2 
i = l  

between the calculated and experimental values of a maximum temperature was sought. The co]ajugated gradient 

method was used to find a minimum. Derivatives of the discrepancy functional were obtained by the difference 
P 

approximation with respect to the parameters qj. Computations were done on a computer (BESM-6) and took 1-5 h. 

Problem (1)-(3) was solved by the integrointerpolation method. Regularizing corrections (of zero and first orders) 

were introduced into the discrepancy. 
The numerical experiments supported the possibility of successfully solving the proposed system of 

equations (see Fig. 3) as applied to heat fluxes of rather simple form. In the case of degeneration, the part of the 
solution that is in the "shadow" domain and does not affect Tmax(x) was found by using the value of the 
discrepancy gradient components (equal to zero). 
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Fig. 5. Recovery of the heat flux density along the coordinates of regions of 
change color of the temperature indicators: 1) exact value; 2) calculation results; 
3) initial approximation, q(t), kW/m 2. 

Thus, having obtained some solution we can determine whether there is a the "shadow" domain, in which 

a change in qw(t) does not affect Tmax(X), in this solution by using the discrepancy gradient. If it exists, then the 

boundary of this domain from above can be found by using qw(t). This will be an estimate of the maximum heat 

flux in 'this domain (see Fig. 4). 

The discrepancy has a ravine structure (the discrepancy changes much more weakly along the direction 

that preserves the total heat flux value). 

The solution of the above-stated problems will be affected significantly by the transition temperature error 

of the temperature indicators of fusion (_1.0%) at low temperatures (up to 500~ [2], by heat transfer in the 

region of the temperature indicators and the difference of their thermophysics from those of the base material, and 

by the temperature gradient across the test layer (the accuracy in determining the transition point coordinate). 

The effect of the errors in the initial data on the accuracy of the solution was examined by numerical 

experiments (the exact data were perturbed by a random error amounting to ___ 1.0%). For rather simple depend- 

ences q(t) (with one maximum) good accuracy of recovering of the heat flux (qw(t)) was obtained (see Fig. 3). It 

should be noted that on increase in the error in the initial data markedly reduces the rate of convergence of the 

gradient methods. For more complex dependences qw(t) (for example, multiextreme ones) the error in recovering 

the heat flux qw(t) is much higher and attains tens of percents (Fig. 5). 
The above results indicate the possibility of measuring (or maximum estimation of) the heat flux density 

over time with a solution to the inverse heat transfer problem by using measurements of the transition region 

coordinates of the temperature indicators, when a priori information on the nature of the thermal effect is available. 

N O T A T I O N  

t, time; x, coordinate; T(t, x), temperature; q(t), heat flux density; 2, thermal conductivity; p, density; C, 

heat capacity; Ti, transition temperature of the i-th temperature indicator; 6, Dirac delta function. Subscripts: max, 

maximum value; w, heated boundary; i, number of a temperature indicator; cal, calculated value. 
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